
Object-Oriented Languages

Parsing and type-checking an object-oriented
language should be fairly straightforward. Just as
with procedural languages like BPL, the symbol
table follows the tree structure. If you have class
Foo and a reference to one of the properties of Foo
(either a method or a variable), the declaration of
that property needs to be found either among the
declarations of Foo or among the declarations of
one of the ancestors of Foo in the class hierarchy.

If class Bar extends class Foo and we assign an
object of class Bar to a variable declared to have
type Foo:
 Foo P = new Bar()

(which of course we can do since every object of
class Bar is also an object of class Foo, just as all
Students are also Persons)

then any property P.x we refer to needs to be a
property of class Foo.

The interesting issues with compiling object-
oriented languages occur in the code generation
stage.

An object of a class is represented by an Object-
Record, which has storage for each property of the
class, both the instance variables and the
methods. If the language does not allow the
methods of a class to be modified the Object-
Record might contain only the instance variables
and a pointer to a static block of the methods, but
for consistency I'll show records with both
variables and methods.

For example, with class declations
 class Foo {

 int x, y;
 void Print() {
 }
 int getX() {
 }
 }

the Object-Record might be

class Foo

X:

y:

Print:

getX:

In this record "Foo" is an
enumerated type so the object
knows its native class, "x" and "y"
are storage locations, and
"Print"and "Foo" are the locations
of those functions in the code file.

class Foo

X:

y:

Print:

getX:

In this record the offsets of the instance variables
from the start of the record are known at compile-
time, so if the getX() method wants to return the
value of instance variable x we know how to
generate code to find that value.

The value of any object is just the address of its
Object-Record.

Let's suppose class Foo also contains a setter
method for instance variable y:
 void setY(int a) {
 y = a;
 }

and that we call this method:
 Foo P = new Foo();
 P.setY(23);

The code generated for the method call pushes the
value of P (the address of its Object-Record) onto
the stack as the unlisted first argument for the call.

This leaves the stack frame for the call looking like:

return address
old frame pointer

argument 23

Object-Record address

frame pointer

The code we generate puts the Object-Record
address (a known offset from fp) into the
accumulator, adds the offset of y from the start of
the Object-Record, and uses this as the destination
address for the assignment. The argument 23, also
at a known offset from fp, is moved to this
destination.

The code for the caller in P.setY(23) does the
following:

• push 23 onto the stack
• push the value of P (the address of its Object-

Record) onto the stack.
• push the current frame pointer onto the stack
• put the value of P into the accumulator
• add the appropriate increment, known at

compile-time, to get the address of the setY
method. Use this as the address of the call.

Python's notation for the method and its call
reflects this runtime structure:

 class Foo:
 def setY(self, a):
 self.y = a

 def main():
 P = Foo()
 P.setY(23)

That mysterious argument self is Python's way of
referring to the Object-Record for variable P.

The Object-Record for an object of a subclass needs
to include all of the inherited properties as well as
those defined within the subclass. For example, if
class Foo has instance variables x and y and
subclass Bar adds instance variable z, an object of
class Bar has all three variables. Since we are
storing the values of these variables in the Object-
Record, that record must have room for all 3.

Since we need to know the offsets of each
property in the Object-Record at compile time, the
variables declared only in the subclass need to be
listed after those declared in the parent class.

To extend our previous example, suppose class Foo
has instance variables x and y, methods getX(),
setX(), and Print(), and subclass Bar adds instance
variable z and method setZ(). The Object-Records
for objects of classes Foo and Bar are shown on the
next slide:

class Foo

X:

y:

Print:

getX:
setY:

class Bar

X:

y:

Print:

getX:
setY:

z:

setZ:

This way an inherited method such as setY() can
use the same offset for variable y for objects of
both class Foo and class Bar.

class Foo

X:

y:

Print:

getX:
setY:

class Bar

X:

y:

Print:

getX:
setY:

z:

setZ:

We would use the same Object-Record structure
for class Bar if it overrides the methods of class
Foo: the method pointers would just point to the
methods of class Bar rather than the methods of
class Foo.

